

Novel Platform: Pipeline in a Mechanism, Oral Treatments for Neuromuscular Diseases

- MF-300 "First-in-Class" Oral Therapy for Sarcopenia
- Additional High Value Opportunities:
 - Sarcopenic Obesity & Neuromuscular Disease

Experienced Team with a Demonstrated Track Record of Success

Epirium Leadership Team

Alex Casdin, CEO

25+ year track record success in biotech & healthcare:

Port. Mgr: Pequot Capital; CEO & PM: Cooper Hil Partners, Reneo Capital

VP Finance, Amylin; CFO, Sophiris

Investor, Board Member & Audit Chair – Ignyta (acq. Roche), Erasca;

Board: Dusa (acq. Sun Pharma), 454 Life Sciences (acq. Roche)

Eric Miller, CFO

Synthorx (acq. Sanofi)

Acadia Pharm - Commercial
Stage

Cadence Pharm. (acq. by Mallinckrodt)

Micah Webster, Ph.D. Sr. Director, TS

Ph.D. in Cellular and Molecular Biology, JHU

Scholar Rock, Associate Director,
Translational Science

Discovery programs & Biomarker Strategy for apitegromab

Key Consultant Advisors

Leigh MacConnell, Ph.D. Clinical Development

25 years drug development, primarily in metabolic and liver disease

Led multiple drug approvals including first in class for T2DM (GLP-1) and Primary Biliary cholangitis (FXR agonist)

Successfully worked with FDA to define drug approval pathways for disease areas without prior regulatory precedence including NASH

Elaine Chiquette, Pharm.D. Scientific Affairs

C-Suite executive with 20+ years experience in pharma, biotech, and medical device

Led regulatory approvals for NDA, BLA, PMA across USA, EU and China

Formerly served as CSO and head of regulatory & medical affairs at Gelesis

Roger Fielding, Ph.D. Professor of Medicine

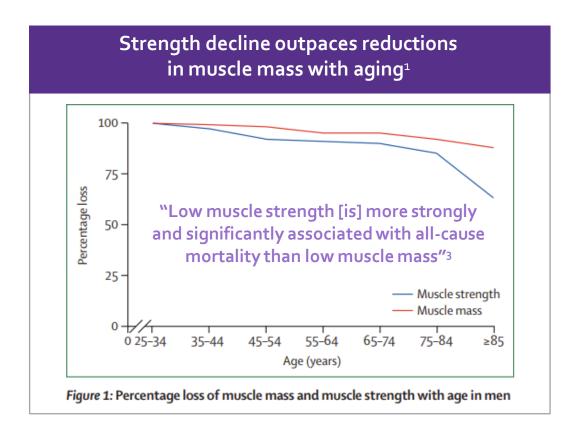
Researcher studying the underlying mechanisms contributing to the ageassociated decline in skeletal muscle mass


Published over 200 per-reviewed papers and 8,000 citations

Conducted numerous studies examining the roll of skeletal muscle power on physical performance in older adults

Sarcopenia: Large and Growing Unmet Medical Need No FDA Approved Therapy

Current U.S. Healthcare Sarcopenia Spending Estimated >\$40 Billion Annually

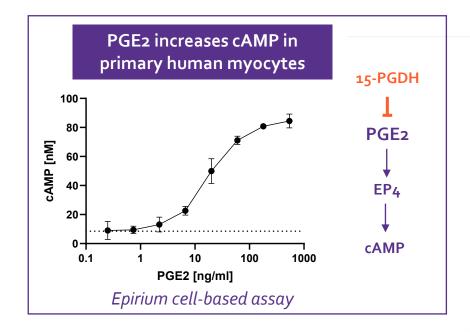

Non-Confidential

Sarcopenia Root Cause: Diminished Muscle Quality

Sarcopenia:

- Severe loss of muscle strength and mass with aging
- Strength declines faster than muscle mass¹
 due to Diminished muscle quality^{2,4}
 - Existing muscle is weaker, contracts slower
 - Disproportionate loss of fast twitch muscle force
 - Progressive denervation of muscle
 - Reduced regenerative potential of muscle stem cells

"Maintaining or gaining muscle mass does not prevent aging-associated declines in muscle strength" 5


¹Cruz-Jentoft and Sayer, *Lancet*, 2019 ²Jubrias and Conley, *Fun. Neurobio. of Aging*, 2001 ³ Li et al., *Med Sci Sports & Exercise*, 2017 ⁴ Mohien et al., *eLife*, 2019

⁵ Goodpaster et al., J Gerontology, 2006

PGE2 Increases cAMP in Human Muscle Cells & Improves Muscle Function in Aged Mice

Mvelin

NMJ Integrity

SCIENCE TRANSLATIONAL MEDICINE | RESEARCH ARTICLE

MUSCLE PHYSIOLOGY

Regeneration of neuromuscular synapses after acute and chronic denervation by inhibiting the gerozyme 15-prostaglandin dehydrogenase

Mohsen A. Bakooshli¹†, Yu Xin Wang^{1,2}†*, Elena Monti¹, Shiqi Su¹, Peggy Kraft¹, Minas Nalbandian¹, Ludmila Alexandrova³, Joshua R. Wheeler^{4,5}, Hannes Vogel^{4,5}, Helen M. Blau¹*

Neuromuscular junction

Satellite

cell

Axon

passes signals

Muscle Intrinsic Effects

RESEARCH ARTICLE

AGING

Inhibition of prostaglandin-degrading enzyme 15-PGDH rejuvenates aged muscle mass and strength

A. R. Palla^{1,2}, M. Ravichandran^{1,2}, Y. X. Wang^{1,2}, L. Alexandrova⁴, A. V. Yang^{1,2}, P. Kraft^{1,2}, C. A. Holbrook^{1,2}, C. M. Schürch^{2,3}, A. T. V. Ho^{1,2}*, H. M. Blau^{1,2}†

Stem-Cell Proliferation

Prostaglandin E2 is essential for efficacious skeletal muscle stem-cell function, augmenting regeneration and strength

Andrew T. V. Ho^{a.1}, Adelaida R. Palla^{a.1}, Matthew R. Blake^a, Nora D. Yucel^a, Yu Xin Wang^a, Klas E. G. Magnusson^{a.b}, Colin A. Holbrook^a, Peggy E. Kraft^a. Scott L. Delp^c, and Helen M. Blau^{a.2}

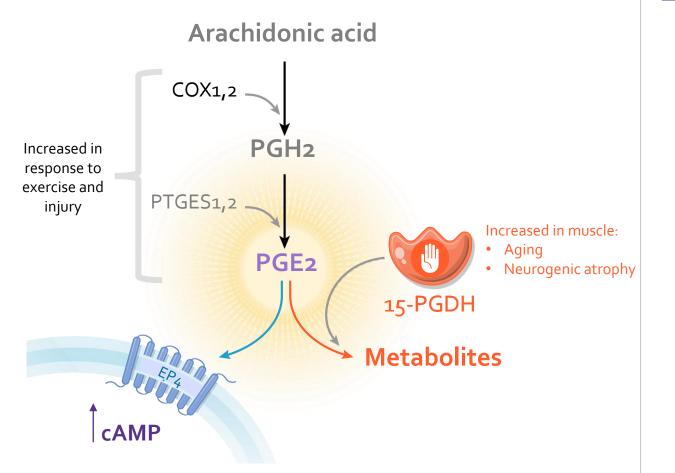
Baxter Labo Stanford Sch Systems Linr Stanford Un

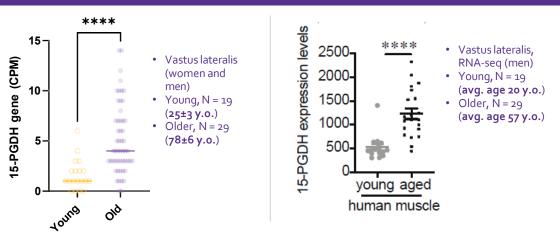
Cell Stem Cell

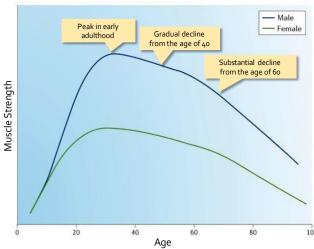
Cell²ress

Artic

Multiomic profiling reveals that prostaglandin E2 reverses aged muscle stem cell dysfunction, leading to increased regeneration and strength


Yu Xin Wang, 1932 Adelaida R. Palla, 192 Andrew T.V. Ho, 1932 Daniel C.L. Robinson, 1 Meenakshi Ravichandran, 1 Glenn J. Markov, 1 Thach Mai, 1 Chris Still II, 3 Makshay Balsubramani, 2 Surag Nair, 6 Colin A. Holbrook, Ann V. Yang, 1 Peggy E. Karti, 1 Shiqi Su, 2 David M. Bums, 1 Mora D. Yucci, 1 Lei S. Qi, 1 Anshul Kundige, 2 and Helen M. Bilau 1-3,


15-PGDH, a Gerotherapeutic Target, Reduces PGE2 Levels, is Upregulated in Aged Muscle

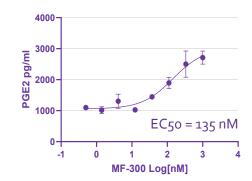

15-HydroxyProstaglandin Dehydrogenase Metabolically degrades PGE2

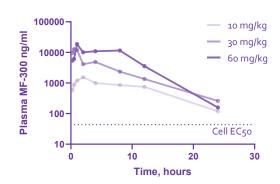
15-PGDH gene expression Elevated in aged human muscle^{3,4}

Grip strength, a predictor of sarcopenia risk, declines with age5

³ GEO167186, ⁴ Raue et al., J Appl Physiol 2012 (published in Palla et al., Science 2021), ⁵ Dennison et al., Nat Rev Rheum 2017

Non-Confidential


MF-300: Epirium's Therapeutic Strategy to Increase PGE2 Levels in Aged Muscle

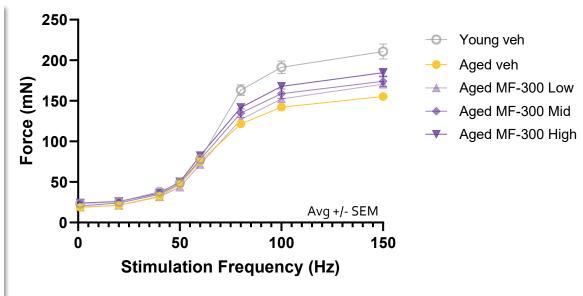

MF-300 Inhibits 15-PGDH to increase levels of PGE2

Arachidonic acid COX1,2 MF-300 PGH₂ Increased in response to Reversible exercise and PTGES_{1,2} injury Increased in muscle: Aging PGE₂ Neurogenic atrophy 15-PGDH Metabolites (e.g., PGE-MUM)

MF-300 increases PGE2 in cell-based assay

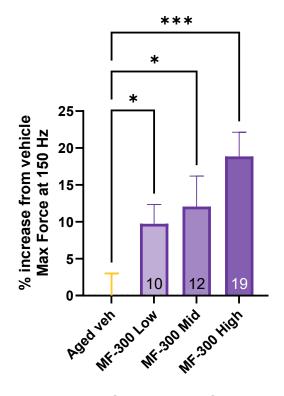
MF-300 is bioavailable and stable in vivo (oral administration)

- Muscle performance
- Mitochondrial biogenesis
- ↑ NMJ integrity


MF-300 Muscle Force Efficacy in Aged Mice with 12-Weeks Oral Administration

Epirium Bio

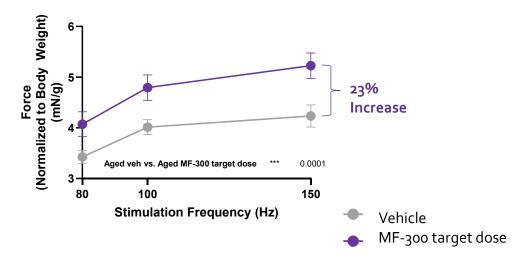
Exposure response observed (based on cumulative 12-week exposure across groups)


Max force of isometric plantar flexion at 12 weeks

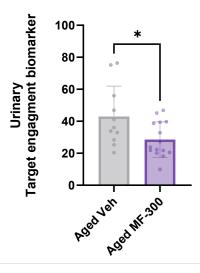
Aged: 90-91 weeks old Young: 16 weeks old Male, C₅₇Bl/6J MF-300 or 12 weeks Vehicle, PO **Endpoint:** In vivo, isometric plantar flexor force

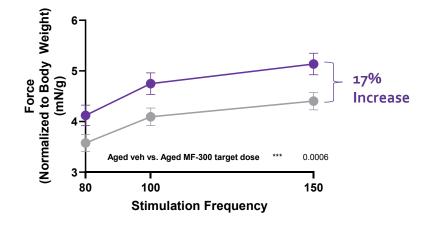
Aged veh vs:	2way ANOVA w/ Dunnett's multiple comparisons test		
MF-300 Low	ns		
MF-300 Mid	p < .0001		
MF-300 High	p < .0001		

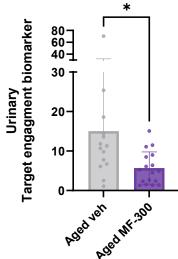
% increase over veh at 150 Hz


Avg +/- SEM; 1way ANOVA

MF-300 Increases Muscle Force with Correlated Reduction in PD Biomarker




Study 1



MF-300 Reduced urinary metabolite of PGE2

Study 2

Broad Potential - Leveraging 15-PGDH Inhibition to Improve Muscle Function

Monotherapy preclinical efficacy

- Sarcopenia: age-related muscle weakness MF-300 Lead Indication
- Nerve Injury

Combination Therapy preclinical efficacy

- Rare Neuromuscular Disease with Standard of Care (SOC) i.e., disease modifying
 - Well established proof-of-concept in disease models of Spinal Muscular Atrophy (SMA)
 - Rationale for indication expansion: DMD, FSHD, Myasthenia Gravis

"Next Generation" muscle enhancement

- Proof-of-principle combination with myostatin inhibitor
 - Additive/synergistic effect increasing functional muscle mass in SMA model
- High-value areas of opportunity to explore
 - Sarcopenic Obesity (i.e., with GLP weight loss)
 - Rare disease + SOC with severe residual unmet need

Clinical Update

- Phase 1 Overview
- Phase 2 Planning: Design & Endpoints

Financials & Wrap-up

Phase 1 Overview

Objectives: Assess the safety and tolerability of MF-300 following single ascending doses (SAD) and multiple ascending doses (MAD) along with:

- MF-300 Pharmacokinetics (PK) & Pharmacodynamics (PD), including target engagement (TE) biomarkers
- Potential for food effect on the PK of MF-300 following a single oral dose
- Characterize the PK/PD, PK/safety relationships, allowing for Ph2 dose selection

Population: Adult healthy volunteers ≥ 18 - < 65 years of age & Healthy Elderly Cohort ~65-75 years of age

Part 1a SAD

- N=8 per cohort (2 pbo, 6 MF-300)
- Broad range of doses
- Large safety margin
- · Allows for flexible dosing
- Elderly cohort dose selection

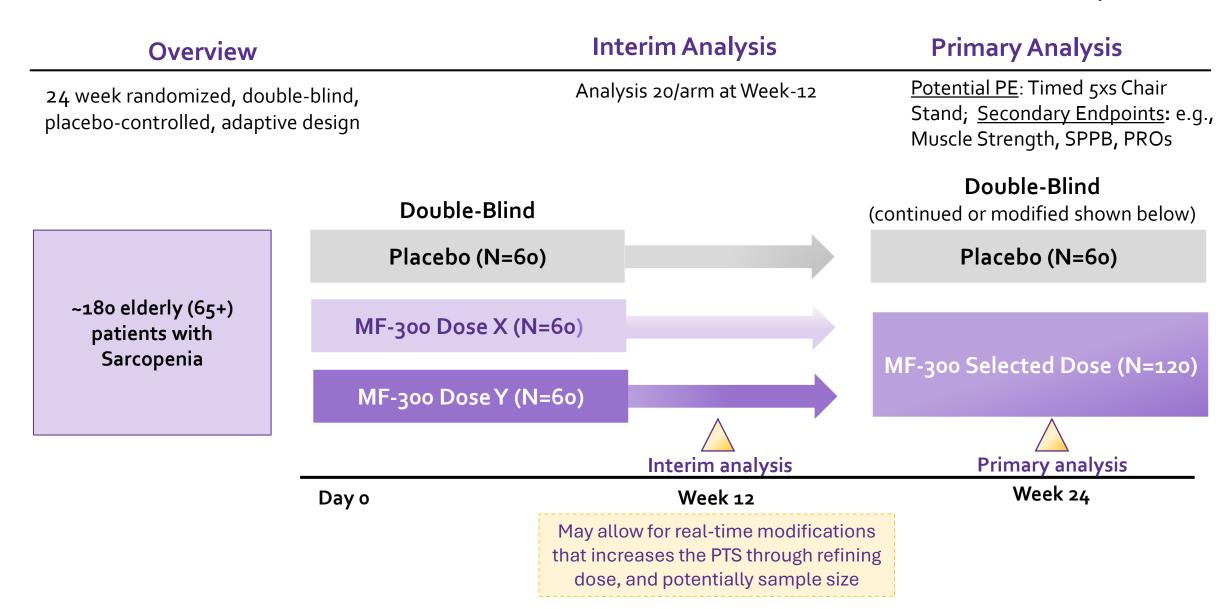
Single Ascending Dose 5 dose adult cohorts, 1 elderly cohort

Part 1b Food Effect

- N=12 (all MF-300)
- MF-300 administered in the fed or fasted state

Food Effect 2 sequence 2 period cross-over

Part 2 MAD


- N=10 per cohort (2 pbo, 8 MF-300)
- Daily dosing for 5 days to achieve steady state PK

Multiple Ascending Dose 3 dose adult cohorts & 1 Elderly follow-on cohort

Non-Confidential

Current Phase 2 Design: 24-week Treatment Duration w/ 12-week Interim Analysis Epirium Bio

Non-Confidential

Phase 2 Planning: Entry Criteria & Indication Relevant Endpoints

Entry Criteria

Elderly (≥65 yo)¹ men and women with sarcopenia according to SDOC definition:²

- Low grip strength (<35.5 kg for men, <20 kg for women)
- Slowness (walking speed <0.8 m/s)
- SPPB* Score 4 8
- Poor performance on 5xs chair stand test

*SPPB = Short Physical Performance Battery (12 pt Scale higher better)

- 1. Reginster JY, et al. Aging Clin Exp Res. 2021;33:3-17.
- 2. Bhasin S, et al. J Gerontol A Biol Sci Med Sci. 2023;78:S86–S93.

Totality of Evidence to Support Sarcopenia Indication

Muscle
Function Test
Primary Endpoint

Muscle
Performance Measures
Secondary Endpoint

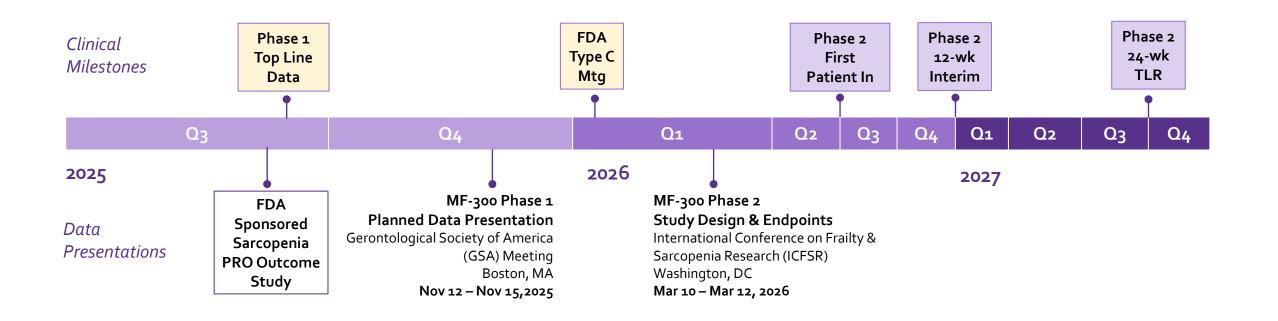
Patient Reported Outcomes
Secondary Endpoint

Meaningful Patient Benefit

Endpoints

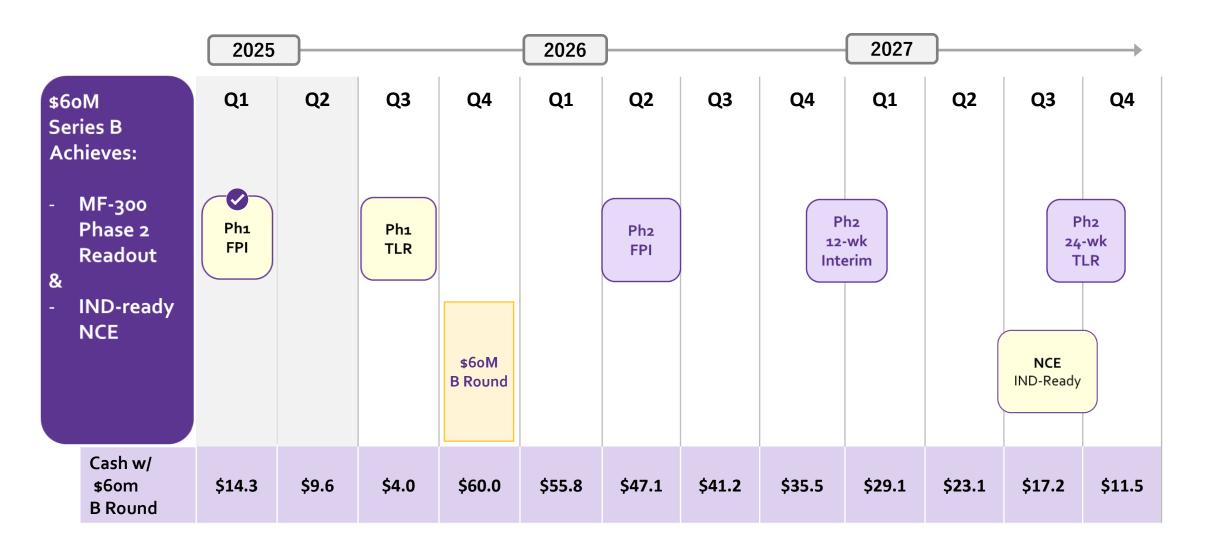
Primary Endpoint:

CFB vs. PBO 5xs Chair Stand Test (sec)


Key secondary endpoints:

CFB vs. PBO in

- Knee extension strength
- 4-meter gait speed test (sec)
- SPPB
- Hand grip strength (kg)
- PROs
 - ➤ PROMIS Physical
 - ➤ SarQoL


Key MF-300 Phase 1 & 2 Clinical Milestones & External Activities

Series B Funded Milestones: MF-300 Phase 2 Data Readout & IND Ready IND

MF-300 Value Creating Milestones over next 6 months

Phase 1 SAD/MAD Initial Topline Results – Sep '25

• Results include PK/PD and Target Engagement (TE) Biomarkers

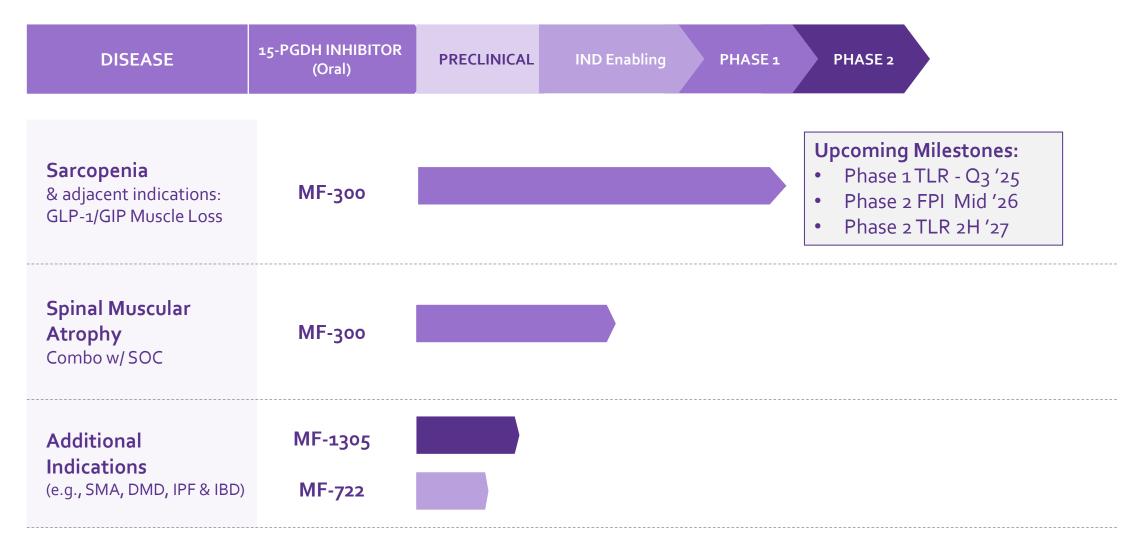
Phase 1 Presentation Targeted for GSA Meeting – Nov '25

Key KOL outreach opportunity

FDA Input on Phase 2 Plans – Jan '26

• Leveraging Sarcopenia & Regulatory Advisors, PRO & Muscle Function Study

MF-300 + MSTNi Muscle Mass & Force Efficacy in Δ7 SMA Model


• Broadens Indication Opportunities: Sarcopenic Obesity, Sarcopenia & Rare Disease

Results from Colitis Prevention Study (DSS) w/ NCE MF-1305

• Leverages interest in IBD, sets stage for value-creating treatment

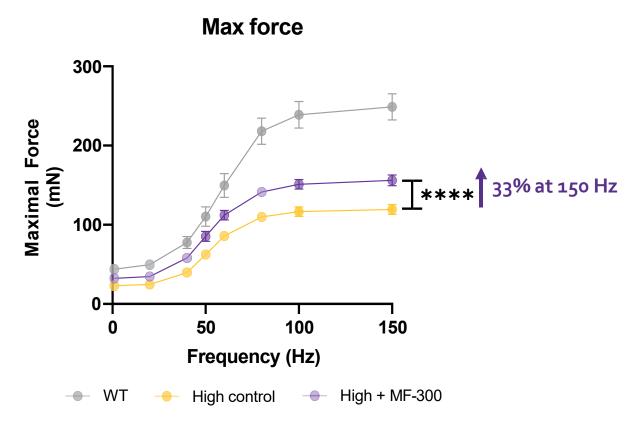
Positioned to Capitalize on "Oral Small Molecule Pipeline in a Mechanism"

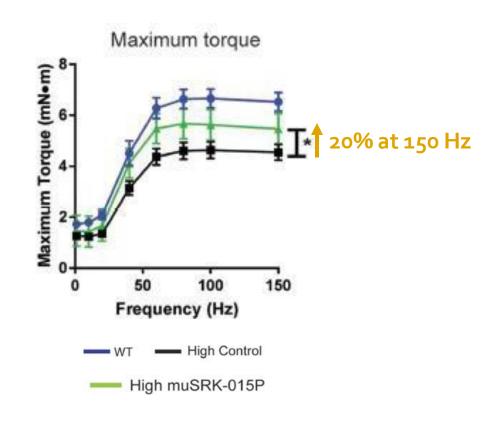
Thank you!

www.epirium.com

info@epirium.com

Spinal Muscular Atrophy Recent Data Review:

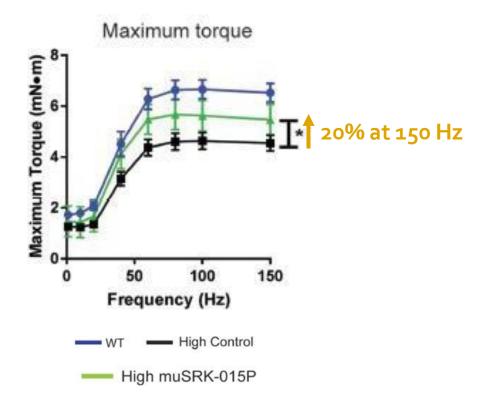

- Prior MF-300 and m-Apitegromab monotherapy efficacy in Delta7 SMA Mouse Study
- Recent (June '25) combo data MF-300 + MNSTi available under CDA


MF-300 Attractive Profile in Translational SMA Model in Mice

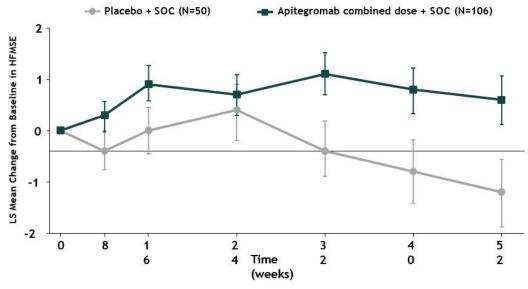
MF-300 in SMNΔ7 High/High Male mice

mSRK-o15P in mouse Δ7 High/High Male and female mice

Force = Torque


MYOLOGICA

Scholar Rock's Preclinical and Clinical Data Set Precedent for Translation of Efficacy


Demonstrates that a 20% increase in isometric plantar flexor force in mice translates to clinical benefit

mSRK-015P in mouse Δ7 High/High

Apitegromab in SMA + SOC (Ph 3 SAPPHIRE)

Least Squares Mean (+/- SE) Change from Baseline in HFMSE Total Score by Visit (MITT Set)

Change from Baseline in HFMSE Total Score

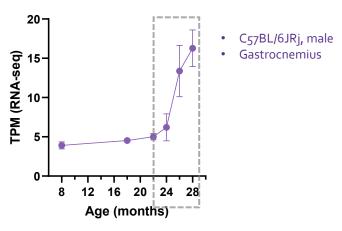
Analysis	n	Results (vs Placebo, n=50)	Unadjusted P-value
Apitegromab 10+20 mg/kg combined	106	1.8	0.0192*
Apitegromab 20 mg/kg	53	1.4	0.1149*
Apitegromab 10 mg/kg	53	2.2	0.0121**

Achieved Statistical Significance

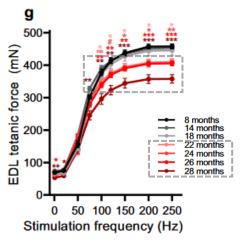
Scholar Rock

Long et al., Hum Mol Gen, 2016

Non-Confidential Page 22

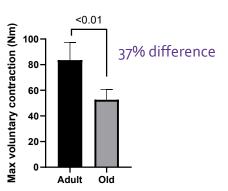

Primary Analysis

The Aged Mouse is a Model to Study MF-300's Effect on Muscle Quality



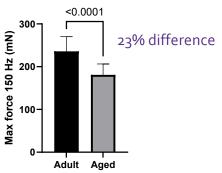
15-PGDH gene expression Elevated in aged mouse muscle

Muscle 15-PGDH gene expression (Hpgd) increases during aging 1


Muscle strength declines during window of elevated Hpgd²

Modeling age-induced muscle weakness with isometric plantar flexion in mice

Maximal voluntary contraction



Male Adult (N=12): 19-24 y.o. Old (N=11): 61-74 y.o.

Graph data and image:
Ochala et al., Exp Ger, 2004

Electrical nerve-evoked contraction

Male (C57Bl/6J) Adult (N=15): 12 m.o. Aged (N=18): 23 m.o.

Mouse image: https://aurorascientific.com/

¹ https://sarcoatlas.scicore.unibas.ch/ GSE145480, ² Borsch et al., Com Bio 2021