

Novel Platform: Pipeline in a Mechanism, Oral Treatments for Neuromuscular Diseases

- MF-300 "First-in-Class" Oral Therapy for Sarcopenia
- Additional High Value Opportunities:
 - Sarcopenic Obesity & Neuromuscular Disease

Experienced Team with a Demonstrated Track Record of Success

Epirium Leadership Team

Alex Casdin, CEO

25+ year track record success in biotech & healthcare:

Port. Mgr: Pequot Capital; CEO & PM: Cooper Hil Partners, Reneo Capital

VP Finance, Amylin; CFO, Sophiris

Investor, Board Member & Audit Chair – Ignyta (acq. Roche), Erasca;

Board: Dusa (acq. Sun Pharma), 454 Life Sciences (acq. Roche)

Eric Miller, CFO

Synthorx (acq. Sanofi)

Acadia Pharm - Commercial

Cadence Pharm. (acq. by Mallinckrodt)

Stage

Micah Webster, Sr. Director, TS

Ph.D. Cellular and Molecular Biology, JHU

Scholar Rock, Associate
Director, Translational Science

Discovery programs & Biomarker Strategy for apitegromab

Key Consultant Advisors

Leigh MacConnell, Ph.D. Clinical Development

25 years drug development, primarily in metabolic and liver disease

Led multiple drug approvals including first in class for T2DM (GLP-1) and Primary Biliary cholangitis (FXR agonist)

Successfully worked with FDA to define drug approval pathways for disease areas without prior regulatory precedence including NASH

Elaine Chiquette, Pharm.D. Scientific Affairs

C-Suite executive with 20+ years experience in pharma, biotech, and medical device

Led regulatory approvals for NDA, BLA, PMA across USA, EU and China

Formerly served as CSO and head of regulatory & medical affairs at Gelesis

Roger Fielding, Ph.D. Professor of Medicine

Researcher studying the underlying mechanisms contributing to the ageassociated decline in skeletal muscle mass

Published over 200 per-reviewed papers and 8,000 citations

Conducted numerous studies examining the roll of skeletal muscle power on physical performance in older adults

Large and Growing Unmet Medical Need No FDA Approved Therapy

Current U.S. Healthcare Sarcopenia Spending Estimated >\$40 Billion Annually

Sarcopenia Root Cause: Diminished Muscle Quality

Sarcopenia:

- Severe loss of muscle strength and mass with aging
- Strength declines faster than muscle mass¹
 due to Diminished muscle quality^{2,4}
 - Existing muscle is weaker, contracts slower
 - Disproportionate loss of fast twitch muscle force
 - Progressive denervation of muscle
 - Reduced regenerative potential of muscle stem cells

"Maintaining or gaining muscle mass does not prevent aging-associated declines in muscle strength" 5

¹Cruz-Jentoft and Sayer, Lancet, 2019

²Jubrias and Conley, Fun. Neurobio. of Aging, 2001

³ Li et al., Med Sci Sports & Exercise, 2017

⁴ Mohien et al., eLife, 2019

⁵ Goodpaster et al., *J Gerontology*, 2006

15-PGDH, a Gerotherapeutic Target, Reduces PGE2 Levels, is Upregulated in Aged Muscle

15-HydroxyProstaglandin Dehydrogenase (15-PGDH) Reduces levels of PGE2

15-PGDH gene expression Elevated in aged human muscle^{3,4}

Grip strength, a predictor of sarcopenia risk, declines with age5

³ GEO167186, ⁴ Raue et al., *J Appl Physiol* 2012 (published in Palla et al., *Science* 2021), ⁵ Dennison et al., *Nat Rev Rheum* 2017

MF-300: Epirium's Therapeutic Strategy to Increase PGE2 Levels in Aged Muscle

MF-300 Inhibits 15-PGDH to increase levels of PGE2

PGE2 increases cAMP in primary human myocytes

MF-300 increases PGE2 in cell-based assay

- Muscle performance
- Mitochondrial biogenesis
- ↑ NMJ integrity

MF-300 Increases Muscle Force with Correlated Reduction in PD Biomarker

Study 1

MF-300 Reduced urinary metabolite of PGE2

Clinical Update

- Phase 1 Overview
- Phase 2 Planning: Design & Endpoints

Phase 1 Overview

Objectives: Assess the safety and tolerability of MF-300 following single ascending doses (SAD) and multiple ascending doses (MAD) along with:

- MF-300 Pharmacokinetics (PK) & Pharmacodynamics (PD), including target engagement (TE) biomarkers
- Potential for food effect on the PK of MF-300 following a single oral dose
- Characterize the PK/PD, PK/safety relationships, allowing for Ph2 dose selection

Population: Adult healthy volunteers ≥ 18 - < 65 years of age & Healthy Elderly Cohort ~65-75 years of age

Part 1a SAD

- N=8 per cohort (2 pbo, 6 MF-300)
- Broad range of doses
- Large safety margin
- Allows for flexible dosing
- · Elderly cohort dose selection

Single Ascending Dose 5 dose adult cohorts, 1 elderly cohort

Part 1b Food Effect

- N=12 (all MF-300)
- MF-300 administered in the fed or fasted state

Food Effect 2 sequence 2 period cross-over

Part 2 MAD

- N=10 per cohort (2 pbo, 8 MF-300)
- Daily dosing for 5 days to achieve steady state PK

Multiple Ascending Dose 3 dose adult cohorts & 1 Elderly follow-on cohort

Phase 1 Expected Results: Conclusions & Phase 2 Dose Selection

Safety and Tolerability

- Single and multiple doses of MF-300 are well-tolerated, safe dose range determined
 - o AEs, Physical exams, Vitals, ECGs, & Labs

Pharmacokinetics

- MF-300 exhibits accept PK over the dose range tested
- Food intake affect MF-300 absorption & bioavailability
- PK profile and key PK parameters were well-characterized
 - o Cmax, Tmax, AUC, T ½

Pharmacodynamics

- Proof of concept: Initial biomarker responses suggest target engagement at certain doses
- Dose response, exposure-response (E-R) relationships characterized to allow Ph2 dose selection

Implications for Phase 2

Data Supporting Phase 2 Dose Selection:

- Identified therapeutic window informing Phase 2 dose selection based on safety and PK findings, supplemented by Efficacy-Response (E-R) relationships:
 - Strong E–R relationship is observed, positioned to determine optimal dose / exposure target for Phase 2 dose selection

Current Phase 2 Design: 24-week Duration w/ 12-week Interim Analysis

Overview		Interim Analysis	Primary Analysis
placebo-control • Part 1: 3 arm, do	nized, double-blind, led, adaptive design ose-finding (6o/arm)	Analysis 20/arm at Week-12	Primary Endpoint: Functional Benefit & Secondary Endpoints
Part 2: 2 arm with optimized dose Double-Blind			Double-Blind (continued or modified shown below)
~180 elderly (65+) patients with Sarcopenia	Placebo (N=6o)		Placebo (N=6o)
	MF-300 Dose X (N=	=60)	
	MF-300 Dose Y (N:	=6o)	MF-300 Selected Dose (N=120)
		Interim analysis	Primary analysis
Day o		Week 12	Week 24
		Provides an opportunity if there's suboptimal dose to re-randomize (2: Placebo or MF-300	

Phase 2 Planning: Entry Criteria & Indication Relevant Endpoints

Entry Criteria

Elderly (≥65 yo)¹ men and women with sarcopenia according to SDOC definition²

- Low grip strength (<35.5 kg for men, <20 kg for women) &
- Slowness (walking speed < 0.8 m/s)
- SPPB*Score 4-8

*SPPB = Short Physical Performance Battery (12 pt Scale higher better)

- 1. Reginster JY, et al. Aging Clin Exp Res. 2021;33:3-17.
- 2. Bhasin S, et al. J Gerontol A Biol Sci Med Sci. 2023;78:S86–S93.

Sarcopenia Indication Criteria

Meaningful Patient Benefit

Endpoints

Primary Endpoint Measure: CFB vs. PBO

Key secondary endpoints:

CFB vs. PBO in

- Muscle specific measures
- Timed walk test
- SPPB*
- PROs
 - ➤ PROMIS Physical
 - ➤ SarQol

Series B Funded Milestones: MF-300 Phase 2 Data Readount & IND Ready IND

MF-300 Value Creating Milestones over next 6 months

Phase 1 SAD/MAD Initial Topline Results – Sep '25

• Results include PK/PD and Target Engagement (TE) Biomarkers

Phase 1 Presentation Targeted for GSA Meeting – Nov '25

Key KOL outreach opportunity

FDA Input on Phase 2 Plans – Jan '26

• Leveraging Sarcopenia & Regulatory Advisors, PRO & Muscle Function Study

MF-300 + MSTNi Muscle Mass & Force Efficacy in Δ7 SMA Model

• Broadens Indication Opportunities: Sarcopenic Obesity, Sarcopenia & Rare Disease

Results from Colitis Prevention Study (DSS) w/ NCE MF-1305

• Leverages interest in IBD, sets stage for value-creating treatment

Positioned to Capitalize on "Oral Small Molecule Pipeline in a Mechanism"

Thank you!

www.epirium.com

info@epirium.com

Spinal Muscular Atrophy Recent Data Review:

- Prior MF-300 and m-Apitegromab monotherapy efficacy in Delta7 SMA Mouse Study
- Recent (June '25) combo data MF-300 + MNSTi available under CDA

MF-300 Attractive Profile in Translational SMA Model in Mice

MF-300 in SMNΔ7 High/High

Max force 300-Maximal Force (mN) 200-100-0-**50** 100 150 Frequency (Hz) WT High control High + MF-300

mSRK-015P in mouse Δ7 High/High

Force = Torque

MYOLOGICA

Scholar Rock's Preclinical and Clinical Data Set Precedent for Translation of Efficacy

Demonstrates that a 20% increase in isometric plantar flexor force in mice translates to clinical benefit

mSRK-015P in mouse Δ7 High/High

Apitegromab in SMA + SOC (Ph 3 SAPPHIRE)

Least Squares Mean (+/- SE) Change from Baseline in HFMSE Total Score by Visit (MITT Set)

Change from Baseline in HFMSE Total Score

Analysis	n	Results (vs Placebo, n=50)	Unadjusted Pvalue	
Apitegromab 10+20 mg/kg combined	106	1.8	0.0192*	
Apitegromab 20 mg/kg	53	1.4	0.1149*	
Apitegromab 10 mg/kg	53	2.2	0.0121**	

Achieved Statistical Significance

Scholar Rock

Long et al., Hum Mol Gen, 2016

Non-Confidential Page 19

Primary Analysis