# **Epirium** Bio

## **Novel Platform:** Pipeline in a Mechanism, Oral Treatments for Neuromuscular Diseases

- Lead Program: MF-300, a "First-in-Class" Oral Therapy for Sarcopenia or Age-Related Muscle Weakness
- Additional Rare Disease Opportunities:
  - Neuromuscular: Spinal Muscular Atrophy (SMA)
    Fibrotic: Idiopathic Pulmonary Fibrosis (IPF)



#### **Experienced Team with a Demonstrated Track Record of Success**

#### **Epirium** Bio

#### **Epirium Leadership Team**



#### Alex Casdin, CEO

25+ year track record success in biotech & healthcare:

Port. Mgr: Pequot Capital; CEO & PM: Cooper Hil Partners, Reneo Capital

VP Finance, Amylin; CFO, Sophiris

Investor, Board Member & Audit Chair – Ignyta (acq. Roche), Erasca; Board: Dusa (acq. Sun Pharma)

Board: Dusa (acq. Sun Pharma), 454 Life Sciences (acq. Roche)

#### Eric Miller, CFO

Synthorx (acq. Sanofi)

Acadia Pharm -Commercial Stage

Cadence Pharm. (acq. by Mallinckrodt)



#### Micah Webster, Sr. Director, TS

Ph.D. Cellular and Molecular Biology, JHU

Scholar Rock, Associate Director, Translational Science

Discovery programs & Biomarker Strategy for apitegromab

#### **Key Consultant Advisors**



#### Leigh MacConnell, Ph.D. Clinical Development

25 years drug development, primarily in metabolic and liver disease

Led multiple drug approvals including first in class for T2DM (GLP-1) and Primary Biliary cholangitis (FXR agonist)

Successfully worked with FDA to define drug approval pathways for disease areas without prior regulatory precedence including NASH



#### Elaine Chiquette, Pharm.D. Scientific Affairs

C-Suite executive with 20+ years experience in pharma, biotech, and medical device

Led regulatory approvals for NDA, BLA, PMA across USA, EU and China

Formerly served as CSO and head of regulatory & medical affairs at Gelesis



#### Roger Fielding, Ph.D. Professor of Medicine

Researcher studying the underlying mechanisms contributing to the ageassociated decline in skeletal muscle mass

Published over 200 per-reviewed papers and 8,000 citations

Conducted numerous studies examining the roll of skeletal muscle power on physical performance in older adults

### Large and Growing Unmet Medical Need No FDA Approved Therapy

#### Current U.S. Healthcare Sarcopenia Spending Estimated >\$40 Billion Annually



#### Sarcopenia Root Cause: Diminished Muscle Quality

#### **€** Epirium Bio

#### Sarcopenia:

- Severe loss of muscle strength and mass with aging
- Strength declines faster than muscle mass<sup>1</sup> due to Diminished muscle quality<sup>2,4</sup>
  - Existing muscle is weaker, contracts slower
  - Disproportionate loss of fast twitch muscle force
  - Progressive denervation of muscle
  - Reduced regenerative potential of muscle stem cells

#### "Maintaining or gaining muscle mass does not prevent aging-associated declines in muscle strength"<sup>5</sup>

<sup>1</sup> Cruz-Jentoft and Sayer, Lancet, 2019
<sup>2</sup> Jubrias and Conley, Fun. Neurobio. of Aging, 2001
<sup>3</sup> Li et al., Med Sci Sports & Exercise, 2017
<sup>4</sup> Mohien et al., eLife, 2019
<sup>5</sup> Goodpaster et al., J Gerontology, 2006



#### Reduction in Muscle Quality Contributes Significantly to Loss in Muscle Force<sup>2</sup>



**Epirium** Bio

#### Increasing cAMP to Improve Muscle Quality

#### Multiple Beneficial Effects of cAMP on Muscle Function<sup>1</sup>



- Acute increased contraction rate & muscle force
- Chronic exercise related adaptation
- Levels of cAMP in muscle reduced with aging<sup>2</sup>
- Increasing cAMP in muscle improves function in preclinical studies<sup>2</sup>



<sup>1</sup>Berdeaux et al., *Am J Phys Endo Met*, 2012 <sup>2</sup>Marco-Bonilla et al., *Int J Mol Sci*, 2023

#### PGE2 Increases cAMP in Human Muscle Cells & Improves Muscle Function in Aged Mice





#### 15-PGDH, a Gerotherapeutic Target that Reduces PGE2 Levels, is Upregulated in Aged Muscle

€ Epirium Bio









#### Grip strength, a predictor of sarcopenia risk, declines with age5



3 GEO167186, 4 Raue et al., J Appl Physiol 2012 (published in Palla et al., Science 2021), 5 Dennison et al., Nat Rev Rheum 2017

#### MF-300: Epirium's Therapeutic Strategy to Increase PGE2 Levels in Aged Muscle



#### MF-300: Epirium's Therapeutic Strategy to Increase PGE2 Levels in Aged Muscle



#### The Aged Mouse is a Model to Study MF-300's Effect on Muscle Quality



#### 15-PGDH gene expression Elevated in aged mouse muscle

Muscle 15-PGDH gene expression (Hpgd) increases during aging<sup>1</sup>



Muscle strength declines during window of elevated Hpgd<sup>2</sup>



<sup>1</sup> https://sarcoatlas.scicore.unibas.ch/ GSE145480, <sup>2</sup> Borsch et al., Com Bio 2021

Modeling age-induced muscle weakness with isometric plantar flexion in mice

Maximal voluntary contraction





Male Adult (N=12): 19-24 y.o. Old (N=11): 61-74 y.o.

Graph data and image: Ochala et al., *Exp Ger*, 2004 Electrical nerve-evoked contraction





Male (C57Bl/6J) Adult (N=15): 12 m.o. Aged (N=18): 23 m.o.

Mouse image: https://aurorascientific.com/

#### MF-300 Increases Muscle Force with Correlated Reduction in PD Biomarker



#### MF-300 Reduced urinary metabolite of PGE2







"Many older people highly value their independence with the desire outweighing other needs. Individuals go to great lengths to achieve independence...."

-Older Adults' Perspective of Independence Through Time: Results of a Longitudinal Interview Study<sup>1</sup>

"A significant number of sarcopenia patients are on the cusp of losing their independence. If MF-300's preclinical efficacy results are replicated in the clinic, MF-300 should provide a clinically meaningful benefit, allowing sarcopenia patients to remain independent."

-Prof. Roger A. Fielding, Ph.D, Senior Scientist & Team Lead, Human Nutrition Research Center on Aging, Tufts University

<sup>1</sup>Taylor et al, *The Genrontologist*, 2023 <sup>2</sup>Kirn et al., 2016

### **Functionally Relevant Increases in Muscle Power** 20% Muscle Power = Muscle Force × Muscle Velocity 15% 9- 10% = clinically meaningful<sup>2</sup> 10% 5% o% Leg Extensor Power

#### Leg Power Dependent Key Functional ADLs:

- Climbing stairs, Getting out of a chair, Bathing **Reflective Efficacy Endpoints (Leg Power):**
- Stair Climb, Double Leg Press, Knee Extension, SPPB\*

#### Phase 1 Overview:



# **Objectives:** Assess the safety and tolerability of MF-300 following single ascending doses (SAD) and multiple ascending doses (MAD) along with:

- MF-300 Pharmacokinetics (PK) & Pharmacodynamics (PD), including target engagement (TE) biomarkers
- Potential for food effect on the PK of MF-300 following a single oral dose
- Characterize the PK/PD, PK/safety relationships, allowing for Ph2 dose selection

#### **Population:** Adult healthy volunteers ≥ 18 - < 65 years of age & Healthy Elderly Cohort ~65-75 years of age



#### Phase 1 Expected Results: Conclusions & Phase 2 Dose Selection

#### Safety and Tolerability

- Single and multiple doses of MF-300 are well-tolerated at the tested doses with a maximum tolerated dose determined or a safe dose range determined
  - AEs, Physical exams, Vitals, ECGs, & Labs

#### Pharmacokinetics

- MF-300 exhibits linear or non-linear PK over the dose range tested
- Food intake did or did not affect MF-300 absorption and bioavailability
- PK profile and key PK parameters were well-characterized
   Cmax, Tmax, AUC, T <sup>1</sup>/<sub>2</sub>

#### Pharmacodynamics

- Proof of concept: Initial biomarker responses suggest target engagement at certain doses
- Dose response, exposure-response (E-R) relationships characterized to allow Ph<sub>2</sub> dose selection
- Micah will review Ph 1 proof concept target engagement biomarkers
   O Urine: PGE Metabolites
  - Plasma: PGE-2 and PGE Metabolites

#### Implications for Phase 2

#### Data Supporting Phase 2 Dose Selection:

- Identified therapeutic window informing Phase 2 dose selection based on safety and PK findings, supplemented by Efficacy - Response (E–R) relationships:
  - Strong E–R relationship is observed, positioned to determine optimal dose / exposure target for Phase 2 dose selection
  - Should resulting E–R be unclear, a broader dose range may be tested in Phase 2



### Current Phase 2 Design: 24-week Duration w/ 12-week Interim Analysis



| Overview                                                                                                                                                                               |                  | Interim Analysis                                                                               | <b>Primary Analysis</b>                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| <ul> <li>24 week randomized, double-blind,<br/>placebo-controlled, adaptive design</li> <li>Part 1: 3 arm, dose-finding (6o/arm)</li> <li>Part a: a arm with optimized dose</li> </ul> |                  | alysis 20/arm at Week-12                                                                       | Potential Endpoint: Change from<br>baseline in SPPB at Week 24 |
| Double-                                                                                                                                                                                |                  |                                                                                                | <b>Double-Blind</b><br>(continued or modified shown below)     |
|                                                                                                                                                                                        | Placebo (N=6o    | )                                                                                              | Placebo (N=8o)                                                 |
| ~180 elderly (65+)<br>patients with<br>Sarcopenia                                                                                                                                      | MF-300 Dose X (N | =60)                                                                                           | MF-300 Selected Dose (N=100)                                   |
|                                                                                                                                                                                        | MF-300 Dose Y (N | =60)                                                                                           |                                                                |
|                                                                                                                                                                                        |                  | Interim analysis                                                                               | Primary analysis                                               |
|                                                                                                                                                                                        | Day o            | Week 12                                                                                        | Week 24                                                        |
|                                                                                                                                                                                        |                  | Provides an opportunity if there's<br>suboptimal dose to re-randomize (2:<br>Placebo or MF-300 | a<br>1) to                                                     |

#### Phase 2 Planning, Assumptions & Endpoint Diligence during '25



#### **Potential Endpoints and Powering Assumptions**

- Performance Measures:
  - SPPB: Short Physical Performance Battery, Timed Stair Climb, 400M Walk Test
  - Leg Strength e.g., double leg press, *Potential wearable monitoring technology*
- Patient Reported Outcomes
- Muscle Quality: MRI (e.g., muscle degeneration), Potential Subgroup Biopsy Analysis
- Target Engagement & Disease Response Biomarkers:
  - PGE2 & Metabolites, Circulatory Biomarkers

| Q1 2025                                                                                                                                                               | Q2 2025                                                                                                                                                                                           | Q3 2025                                                                                                                                                                                                         | Q4 2025                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>KOL discussions and<br/>introductions</li> <li>Int'l Conference of Frailty and<br/>Sarcopenia Research (ICFSR)</li> <li>1-on-1 meetings with KOLS</li> </ul> | <ul> <li>Engaging w/ SAB on Ph 2</li> <li>Endpoints &amp; Trial Design</li> <li>Roger Fielding</li> <li>Jack Guralnik</li> <li>David Cella</li> <li>Shally Bhasin</li> <li>Beth Barton</li> </ul> | <ul> <li>End of Phase 1 Briefing book<br/>submitted</li> <li>Gerontological Society of<br/>America (GSA) Research Mtg.</li> <li>Sarcopenia PRO, FDA<br/>Sponsored, Study w/<br/>performance outcomes</li> </ul> | <ul> <li>Type D meeting FDA</li> <li>Sarcopenia, Cachexia &amp;<br/>Wasting Disorders (SCWD)<br/>Meeting</li> <li>FDA feedback on PRO study</li> </ul> |

**Epirium Bio** 

#### Current cash-on-hand achieves Phase 1 data





#### Phase 1 Topline Results – Readout Q3 '25

- Inclusion of Healthy Elderly Cohort (~65-75 yrs old)
- Results include PK/PD and Target Engagement (TE) Biomarkers

#### 24-week Phase 2 FDA guidance – Q4 '25

- Targeting Type D FDA Meeting, Supported by KOL input
- Disease Response Pharmacodynamic Biomarkers Validation Ongoing

#### Increasing MF-300's Efficacy Profile with KOLs

- ICFSR Two Poster Presentations & Corporate Symposium Participant Mar '25
- Scientific presentations planned for GSA Nov '25 & SCWD Dec '25



#### **Opportunistic SMA Study – Readout Q2 '25**

- Efficacy of MF-300 & SRK's Apitegromab vs Apitegromab in D7 mice
- Success significantly broadens aperture re: additional indications



# Thank you!



# www.epirium.com



#### € Epirium Bio

## Supplemental Information:

- Milestones next 12 months
- MF-300 & Apitegromab in SMA Delta 7 Mice, Apitegromab Phase 3 Results
- MF-300 Nerve Injury Data

#### 2025 Key Epirium Milestones: Sarcopenia Meetings and Investor Conferences

#### Mar 12 – Mar 14, 2025 15th International Conference on Frailty and Sarcopenia Research Nov 12 – Nov 15,2025 Dec 06- Dec 08, 2025 Abstracts **Gerontological Society of** 18th International Conference • MF-300 accelerating recovery of muscle force America (GSA) Annual of the Society of Sarcopenia, following nerve injury Scientific Meeting **Cachexia and Wasting** • Encore: MF-300 reversing age-related muscle Disorders weakness in sarcopenia • Presented at ICSFR Biotech Showcase SMA Delta7 Mice **FDA** Phase 1 Combination Type D Study Data TLR Mtg Jul Feb Mar Apr May Jun Aug Sep Oct Nov Dec Jan **KOL** meetings FDA Jefferies JP Morgan Clinical Sponsored Nov 18-20 Jan 12-16 Endpoints Sarcopenia Workshop PRO ICFSR Outcome Study

**Epirium** Bio

#### MF-300 in mouse Δ7 High/High



## MYOLOGICA

#### Scholar Rock's Preclinical and Clinical Data Set Precedent for Translation of Efficacy

#### Demonstrates that a 20% increase in isometric plantar flexor force in mice translates to clinical benefit

mSRK-015P in mouse  $\Delta$ 7 High/High



#### Apitegromab in SMA + SOC (Ph 3 SAPPHIRE)



Change from Baseline in HFMSE Total Score

|          |                                  |     | Results            | Une directe d <b>P</b> roduce |                                      |
|----------|----------------------------------|-----|--------------------|-------------------------------|--------------------------------------|
|          | Analysis                         | n   | (vs Placebo, n=50) | Unadjusted P-value            |                                      |
| Primary  | Apitegromab 10+20 mg/kg combined | 106 | 1.8                | 0.0192* 📀                     | Achieved Statistical<br>Significance |
| Analysis | Apitegromab 20 mg/kg             | 53  | 1.4                | 0.1149*                       |                                      |
|          | Apitegromab 10 mg/kg             | 53  | 2.2                | 0.0121**                      | Scholar <b>Rock</b>                  |

Long et al., *Hum Mol Gen*, 2016



