MF-300, an orally bioavailable small molecule inhibitor of 15-PGDH, improves muscle force in preclinical models of neuromuscular dysfunction and disease

Micah Webster¹, Andrew TV Ho², Jack Vandermeulen³, Jennifer Martin³, Bruce Fahr⁴, Virginia Grant⁵, Susan Paulson⁶, Annie Clark⁵, Ramzi Khairallah³
¹ Epirium Bio, San Diego, CA; ² Université Paris Cité, Paris, France; ³ Myologica, LLC, Baltimore, MD; ⁴ Pharmaceutical Advisors, LLC, Princeton, NJ; ⁵ Pliant Therapeutics, South San Francisco, CA

Introduction
- Prostaglandin E2 (PGE2) is a lipid signaling molecule critical for muscle regeneration and function.
- Therapeutic inhibition of the PGE2-degrading enzyme, 15-Prostaglandin Dehydrogenase (15-PGDH), improved muscle strength in aged mice.
- MF-300 is an orally bioavailable small molecule inhibitor of 15-PGDH.
- Administration of MF-300 in mice increased strength in two models of Spinal Muscular Atrophy (SMA) as well as an inducible model of muscle atrophy (sciatic nerve crush).

Figure 1) PGE2 Pathway
- MF-300 blocks binding of PGE2 to 15-PGDH
- Increased stem cell proliferation (1)
- Increased muscle force (1, 2)
- Improved mitochondrial function (2)
- MF-300 inhibits 15-PGDH in vitro

Figure 2) MF-300 MoA and PK
- 15-PGDH Inhibition (Biochemical Assay)
- MF-300 inhibits 15-PGDH in cell-based assay
- PGE2 Stability (Cell-based Assay)
- MF-300 inhibits 15-PGDH in cell-based assay

Figure 3) MF-300 administration (IP) in SMN Δ7 mice
- MF-300 significantly increased force in Δ7 (high/high) mice
- SMN Δ7 Mouse Model – Severe phenotype mediated by therapeutics administration of the SMN splice enhancer, SMN-C3 (5).
- High/High = moderate phenotype (SMN-C3) mice
- Endpoint - isometric plantar flexor force.
- Conclusion - MF-300 increased force at all dose levels.

Figure 4) MF-300 administration (PO) in SMNΔC mice
- MF-300 dose responsive increase in force in SMNΔC mice
- SMNΔC is a genetic mouse model for mild phenotypic SMA.
- Endpoint - isometric plantar flexor force.
- Conclusions:
 - MF-300 increased force in a dose responsive manner
 - Increased force was independent of any effect on muscle mass.

Figure 5) MF-300 administration (PO) in a sciatic nerve crush model
- MF-300 accelerated rate of force recovery following nerve crush injury
- Healthy animals - surgery to expose the sciatic nerve
- Nerve crush for 30 sec (sham + no crush injury).
- In vivo muscle force (isometric plantar flexor) - baseline and then once weekly starting at 14 days post injury.
- MF-300 accelerated force recovery at 18- and 35-days post injury.
- Conclusions:
 - Therapeutic administration of MF-300 increased muscle force and function in mouse models of SMA. Preliminary RNA-seq analysis suggests that MF-300 corrected dysregulated expression of multiple genes in Δ7 muscle.
 - Increased muscle force was independent of changes in muscle mass. Comparing nerve- to muscle-stimulated contraction suggests that MF-300 has a muscle intrinsic effect on force after 1 week of treatment. An effect on NMJ is also possible, given these data.
 - MF-300 accelerated force recovery following sciatic nerve injury in healthy mice. Timing of effect on force recovery suggests improved regeneration of functional neuromuscular junctions (2) and/or enhanced sensitivity of the muscle to contractile stimuli.

References
1. Ho et al., Prostaglandin E2 is essential for effective skeletal muscle stem cell function, augmenting regeneration and strength. PNAS 2017
2. Park et al., Rehabilitation program design to improve 15-PGDH-responsive muscle mass and strength. Science 2021
3. Fecker et al., 15-PGDH inhibition rescues muscle function after spinal-bounding injury. JCB 2017
4. Mogilner et al., Improvement of the mJackx2 strain following sciatic nerve crush injury: a noradrenergic regeneration model. Exp Neurol. 2007
5. Naqvi et al., DFβH3 silencing improves motor function and longevity in mice with spinal muscular atrophy. Science 2014

Acknowledgements
We thank the following thought partners for contributing to discussions on data interpretation: Elizabeth Barton, Helen Blau, Robert Booth, Karen Che, Scott DeL, Lyndsay Murray, Charlotte Gunnar.

Contact: Micah Webster, PhD, Director of Translational Sciences, mwebster@epirium.com