MF-300, an orally bioavailable small molecule inhibitor of 15-PGDH, improves muscle force in preclinical models of neuromuscular dysfunction and disease **Epirium Bio**

Micah Webster¹, Andrew TV Ho², Jack Vandermeulen³, Jennifer Martin³, Bruce Fahr¹, Virginia Grant¹, Susan Paulson⁴, Annie Clark⁵, Ramzi Khairallah³ 1 Epirium Bio, San Diego, CA; 2 Université Paris Cité, Paris, France; 3 Myologica, LLC, Baltimore, MD; 4 Pharmaceutical Advisors, LLC, Princeton, NJ; 5 Pliant Therapeutics, South San Francisco, CA

Introduction

- Prostaglandin E2 (PGE2) is a lipid signaling molecule critical for muscle regeneration and function (1, 2).
- Therapeutic inhibition of the PGE2degrading enzyme, 15-Prostaglandin Dehydrogenase (**15-PGDH**), improved muscle strength in aged mice (2).
- **MF-300** is an orally bioavailable small molecule inhibitor of 15-PGDH.
- Administration of MF-300 in mice increased strength in two models of Spinal Muscular Atrophy (**SMA**) as well as an inducible model of muscle atrophy (sciatic nerve crush).

Figure 3) MF-300 administration (IP) in SMN Δ7 mice

MF-300 significantly increased force in Δ7 (high/high) mice

Figure 4) MF-300 administration (PO) in SMN1^{C/C} mice

MF-300 dose responsive increase in force in SMN1^{C/C} mice

Figure 1) PGE2 Pathway

• Increased stem cell proliferation (1) Effects on skeletal Increased muscle force (1, 2) Improved mitochondrial function (2)

Holm-Sidak's Multiple Comparisons Test	Adjusted P Value
Vehicle vs. MF-300 (3 mg/kg)	0.2568
Vehicle vs. MF-300 (10 mg/kg)	0.2568
Vehicle vs. MF-300 (30 mg/kg)	0.0429

Preliminary RNA-seq analysis of MF-300 treated muscle from Δ7 (high/high) mice

<0.0001

• RNA-seq analysis – gastrocnemius muscles (N=6/group) from above study.

Vehicle vs. MF-300 (30 mg/kg)

- Poly A selection, paired end reads, read depth ~30x10⁶ per sample.
- Preliminary results: CREB promoter sequences are significantly enriched in DEGs from MF-300 treated muscle.
- GO and Ingenuity Pathway Analysis predicts corrective effects of MF-300 on Mitochondrial Activity, among other pathways.

MF-300 improved time-to-right in Δ_7 (med/med) mice

MF-300 increased force of both nerve and direct muscle stimulated contraction

- In —life study design as above with 1) Veh and 2) MF-300 60 mpk groups.
- Force generated by nerve vs muscle stimulation was compared to localize effect of MF-300.
- Observed greater increase in muscle stimulated force over nerve with MF-300 compared to Veh.
- Conclusion MF-300's effect on force after 4-week treatment is, at least in part, intrinsic to muscle. These data do not exclude potential effect on NMJ.

Conclusions

- Therapeutic administration of MF-300 increased muscle force and function in mouse models of SMA. Preliminary RNAseq analysis suggests that MF-300 corrected dysregulated expression of multiple genes in Δ 7 muscle.
- Increased muscle force was independent of changes in muscle mass. Comparing nerve- to muscle-stimulated contraction suggests that MF-300 has a muscle intrinsic effect on force after 4 weeks of treatment. An effect on NMJ is also possible, given these data.
- MF-300 accelerated force recovery following sciatic nerve injury in healthy mice. Timing of effect on force recovery suggests improved regeneration of functional neuromuscular junctions (4) and/or enhanced sensitivity of the muscle to contractile stimuli.

References

- Ho et al., Prostaglandin E2 is essential for efficacious skeletal muscle stem-cell function, augmenting regeneration and strength. PNAS 2017
- Palla et al., Inhibition of prostaglandin-degrading enzyme 15-PGDH rejuvenates aged muscle mass and strength. Science 2021
- Fertuck et al., In vivo recovery of muscle contraction after alpha-bungarotoxin binding. JCB 1975
- Magill et al., Reinnervation of the tibialis anterior following sciatic nerve crush injury: A confocal microscopic study in transgenic mice. *Exper. Neuro.* 2007
- Naryshkin et al., SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy. Science 2014

Acknowledgements

We thank the following thought partners for contributing to discussions on data interpretation: Elizabeth Barton, Helen Blau, Robert Booth, Karen Chen, Scott Delp, Lyndsay Murray, Charlotte Sumner

Contact: Micah Webster, PhD, Director of Translational Sciences, mwebster@epirium.com